# Write an equation of a line with a slope So this is the point 0 comma b. Obviously, haven't done it very exactly, but our line is going to look like. We know how to use the point-slope form, so the final answer is: Repeat the process if you'd like to plot a 3rd point. Create the equation that describes this line in point-slope form. The slope-intercept form and the general form are how final answers are presented. We know we are looking for a line parallel to. Note also that it is useful to pick a point on the axis, because one of the values will be zero. When x is 0, y is And of course, if you need more help, feel free to ask the volunteers on our math help message board.

And if we wanted to graph it, it would look something like this. The trickiest part about graphing slope is knowing which way to rise and run if the slope is negative. We went down 3 since the slope was negative.

So what b do we need to make that happen. And now we can just solve for b. And we are done. The slope essentially tells us, look, start at some point on the line, and go to some other point of the line, measure how much you had to move in the x direction, that is your run, and then measure how much you had to move in the y direction, that is your rise.

The more we go down in this situation, for every step we move to the right, the more downward sloping will be, the more of a negative slope we'll have. The point slope form gets its name because it uses a single point on the graph and the slope of the line.

The y-intercept just tells us where we intercept the y-axis. We will maintain the labeling we used for finding slope. As we have in each of the other examples, we can use the point-slope form of a line to find our equation.

Now that you know how to graph slope, you are ready to move onto using Slope Intercept Form to graph your equations. So this is our y-intercept. So if we wanted to graph this line, that's my x-axis, and this is my y-axis. Repeat the above steps from your second point to plot a third point if you wish.

Since the rise is positive 2, I counted up 2. Your point is -1,5. Count the rise from the point that you plotted. In higher dimensions, two lines that do not intersect are parallel if they are contained in a planeor skew if they are not. The point slope form gets its name because it uses a single point on the graph and the slope of the line.

If the slope is positive, count up and if the slope is negative, count down. The y-intercept is. Algebra > Lines > Finding the Equation of a Line Given a Point and a Slope.

Page 1 of 2. Finding the Equation of a Line Given a Point and a Slope. If we have a point, Let's find the equation of the line that passes through the point (4, -3) with a slope of The equation of a line is typically written as y=mx+b where m is the slope and b is the y-intercept. If you know the slope (m) any y-intercept (b) of a line, this page will show you how to find the equation of the line.

This is called the slope-intercept form because "m" is the slope and "b" gives the y-intercept. (For a review of how this equation is used for graphing, look at slope and graphing.). I. A line has a slope of negative 3/4 and goes through the point 0 comma 8.

What is the equation of this line in slope-intercept form? So any line can be represented in slope-intercept form, is y is equal to mx plus b, where this m right over here, that is of the slope of the line.

Improve your math knowledge with free questions in "Find the slope of a graph" and thousands of other math skills. Equation of a Line from 2 Points. First, let's see it in action. Here are two points (you can drag them) and the equation of the line through them.

Write an equation of a line with a slope
Rated 5/5 based on 30 review
Writing Equations of Lines